
A systematic approach to the evaluation of Σ (m,n>0)(am2+bmn+cn2)-s

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1215

(http://iopscience.iop.org/0305-4470/9/8/007)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 9, No. 8 ,  1976. Printed in Great Britain. @ 1976 
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Abslract. A condition proposed by Glasser for the double sum 

s = 1 (am’ + bmn + cn ’)-’ 
(m,n *O.O) 

to be decomposable into sums of products of simple sums is examined. The condition is that 
the reduced forms of the binary quadratic form am’ + bmn +cn2 be divisible so that there is 
just one class per genus. Although no general proof has yet been provided, procedures are 
described here for decomposing and evaluating any S satisfying the suggested condition, 
thus demonstrating that the condition is sufficient. Experience with double sums not 
satisfying the condition suggests that it is also necessary. 

1. Introduction 

In a previous paper Zucker and Robertson (1975, to be referred to as I) evaluated 
exactly a few double sums of general form 

S = S ( a , b , c ) = S ( a , b , c : s ) =  c (am2+bmn+cn2)-s  
(m,n, + 0.0) 

(1.2) 

SZ=SZ(a, b , ~ ) = S z ( a , b , ~ : s ) =  1 ( - l ) ” ( ~ m ~ + b m n + ~ n ~ ) - ~  (1.3) 

S1,2=S1,2(a, b, C ) = S ~ , ~ ( U ,  b, c : s ) =  C (-l)m+n(am2+bmn+cn2)-s. (1.4) 

(m,n ZO.0) 

(m,n +O,O) 

The summation is over all integer values of m and n excluding the case where both are 
simultaneously zero. The term ‘exact’ is used here in the sense introduced by Glasser 
(1973b), and means that S may be decomposed into a linear sum of products of pairs of 
Dirichlet L-series. If this can be done S is said to be solvable. The properties of 
L-series have been discussed in the previous communication (Zucker and Robertson 
1976, to be referred to as 11). In I two queries were raised. These were: (a) no criterion 
was known for when any given S was soluble; ( b )  no general methods for solving S could 
be given. We believe it is now possible to answer both these queries. To do this 
properties of the binary quadratic form am2+bmn +cn2 = (a, 6, c) associated with S 
have to be discussed and this is now done. 

1215 
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The form (a, 6,c) in which a, 6, c, m, n are all integers has a discriminant, 
d = b2 - 4ac = -A. If d < 0 (A > 0) the form is said to be definite. If a > 0 the form is 
positive definite. Only positive definite forms will be considered here. If 6 Q a Q c the 
form is said to be reduced. For any given d there is only a finite number of reduced 
forms. This is called the class number,h(d),of the discriminant d.  If a, 6,c are relatively 
prime the form is said to be primitive, otherwise it is imprimitiue. We write H ( d )  for the 
number of primitive reduced forms and I ( d )  for the number of imprimitive reduced 
forms. As an example consider the forms with d = -12. There are two reduced forms, 
(1,0,3) and (2,2,2), hence h(-12) = 2. (1,0,3) is pimitive and (2,2,2) is imprimitive 
so that in thiscase H(-12) = I(-12) = 1. All other (a, 6, c) with d = -12 can be reduced 
to either (1 ,0 ,3)  or (2,2,2) by unimodular transformations. For example, (1,4,7) will 
be reduced to (1,0,3) by the substitution m = M - 2N, n = N. Such forms are said to be 
equivalent, and are written (1,0,3) - (1,4,7). The form (a, b, c) is said to represent the 
number X if there exist integers m, n such that am2 + 6mn + cn2 = X.  Equivalent forms 
represent the same integers. The value of S(a, 6, c) is thus the same for all equivalent 
forms and therefore we need only concern ourselves with reduced (a, 6, c). The 
reduced forms are divided into genera according to the integers represented. Every 
genus has an equal number of reduced forms. If for some discriminant there is precisely 
one form per genus the forms of that discriminant are said to be disjoint. For positive 
definite forms A can only be either =O(mod 4) or =3(mod 4). According to whether 
A = O(mod 4) or 3(mod 4), (l,O, A/4) or (1, 1, ;(A + 1)) is called the principal form of 
discriminant A. A considerable amount of the theory of binary quadratic forms has 
been summarized very briefly in the foregoing account. A fuller account may be 
obtained from Dicks'on (1929, 1939). 

Smart (1973) and Glasser (1973a, b) have revived much recent interest in the 
evaluation of S. In particular Glasser (1973b) solved S(l,O, 16) using number 
theoretic techniques. The discriminant of (1,0,16) is -64, and the only other reduced 
form of that discriminant is (4,4,5). (1,0,16) and (4,4,5) are disjoint and Glasser 
(1973b) suggested that S might always be solvable whenever the reduced forms 
associated with it were disjoint. We have in fact been able to solve S in every case given 
in Dickson (1929) where this is so. Over a hundred cases have been given there. As yet 
it has not been possible to solve any other S in terms of L-series with real characters. 
Thus, it appears to us that Glasser's (1973b) criterion for the solvability of S is correct. 
However, we know of no complete proof of this. me main purpose of this communica- 
tion is to present general methods of solving S when this is possible, and so answer the 
second query raised in I. The solution for the principal reduced form for a given A will 
be mainly considered, but there is no difficulty in extending the methods used here to 
the other reduced forms. 

2. Solutions for the principal form of flu, b, c) 

All the solutions have been exhibited in tables 1 and 2. It was found that most of the 
solvable S were divided into several species and sub-species each characterized by their 
own properties. The symbols used in the tables have the following meaning. P = 1 or 

pi where the pi are all different odd primes, i.e. Pis  an odd square-free integer. The 
summation XfiIpis over all the divisors, p, of P. 1 is included amongst the divisors. (21p) 
is the Kronecker symbol as defined in 11. a is written for [(2(p)+(2)P/p)] and can 
assume one of the three values 0, *2. p is written for (21p) (21P/p) and may be *l. The 
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Table 2. 

(b)Solutionsforspecial S(1, 1, A )  

product of two L-functions is written L,,L,, in order to emphasize the fact that the 
pairs of L-function appearing in the solution are always of opposite type as defined in 
11. Examples of solutions follow. 

Species 1 

P = 7 = A , n = l :  S(1, 1,2) = 2L+1L-, 

P= 3 x 5 ,  n = 2: S(l, 1,4) = L+1L-r5 +L-,L+,. 

Dickson (1929) has given 31 examples of this species with P< 23 000. They are P = 3, 
7,11,15,19,35,43,51,67,91,115,123,163,187,195,235,267,403,427,435,483,  
555,  595, 627, 715, 795, 1155, 1435, 1995, 3003, 3315. The solution for P = 3  is a 
special case. It is S(1, 1, 1) = 6L+1L-3. 

Species 2 

P = 5 ,  A=20, n = 1: S(1, 0, 5)=L+lL-20+L-4L+5. 

Dickson (1929) gives 18 numbers of this species with P <  10 000. They are P= 5 ,  13, 
21, 33, 37, 57, 85,93, 105, 133, 165, 177,253, 273, 345, 357, 385, 1365. 

Species 3(a )  

P = 3 , A = 2 4 , n = l :  S(l,O, 6)=L+lL-24+L-3L+8 

Species 3(b) 

P = 3 ,  A=96,n=1:  (211) = +1, (213) = -1 

2S(1, 0,24)= (1-2-" +2'-2s))L+lL-24+(l +2-" +2'-2s))L-3L+8+L-4L+24+L+12L-8. 

There are 15 examples of this species with P< 10 000. They are P = 1,3,5,11,15,21, 
29, 35, 39, 51,65,95, 105, 165, 231. 
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Species 4(a) 

P = 7 ,  A = 2 8 , n = 1 :  

s(1,0,  7)=2(1-21-s+21-2s))L+1L-7 

(211) = 1, (217) = 1, a = 2, p = 1 

Species 4(b) 

A =  112 

s( 1, 0,28) = (1 - 21-s + 3 . 2-2s - 22-3s + 22-4s)L+1L-7 + L-4L+28 

Species 4(c) 

A =  448 

2s(1,0,112)= (1-2~-“+3.  2-2s-22-3s+3. 21-4s -23-5s+23-6s )~+1~-7  

+ (1 f 21-2s)L-4L+28 +L-&+56 + L+&-56. 

There are only three members of this species for P < 10 000 and they are P = 3,7,15. 
The method for solving S for species 1 , 2  and 3(a) for which all the reduced forms 

are primitive is essentially the arithmetic method described by Glasser (1973b). The 
method is now illustrated here with proofs for species 1 when first P = p  and then 
P = pq, p and q being different odd primes. 

For P = p  thereis justonereducedform,fandthisisf= (1,1, a(l +P)). Letf(N) be 
the number of ways the integer N can be represented by f .  Suppose m2+ mn + 
(1 +p)n2/4 EO (mod p),  then 

m2 + mn(p + 1) + (p + 1)’n2/4 3 0 (mod p )  

since we have just added pmn + (p2 +p)n2/4. Therefore 

[m + (p + 1)n/2I2 = 0 (mod p )  and m + (p + l)n/2 = 0 (mod p) .  

It follows that m - (p - l)n/2 3 0 (mod p).  Let 

m + (p + l)n/2 = px and m - (p - l)n/2 = py. 

It then follows that 

m2+ mn + ( p  + i)n2/4 = (p2+p)(x2 + y2)/4+(p2 -p)xy/2.  

m2+mn + ( p +  i)n2/4 = p [ u 2 +  uu +(p + 1)u2/4]. 

Nowle tx=u  andy=-u-u,then 

(2.1) 
(2.1) shows that to every (m, n) such that m2+mn +(1 +p)n2/4=pN there is a unique 
(U, v )  such that U’ + ut, + (p + l)u2/4 = Nand vice versa. This means thatf(N) = f ( p N ) .  
Therefore by theorem 64 in Dickson (1929), which is a modified form of a theorem first 
given by Dirichlet (1840), 

When P = pq the proof is more complicated. There are two reduced forms namely 
f = (1,1, $(pq + 1)) and g = ($(p + q ) ,  $(p -q) ,  $(p +q)). It is first proved as before that 
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The non-principal solution is 

S(i(p+q), $ @ - q ) , i @ + q ) ) = A - B  =L+1L-m-LrgLfp. (2.6) 

S(2,1,2) = L+1L-15- L-3L+5. (2.7) 

Thus in the example given for species 1 in which P = 3 X 5 the non-principal solution is 

The solutions for species 2 and 3(a) follow a similar procedure. The solution becomes 
progressively more complicated as the number of primes increase, but nonetheless 
conforming to the pattern illustrated above. There is no difficulty in obtaining the 
solutions for non-principal forms. 

Species 3(b), 4(a), 4(b) and 4(c) have imprimitive reduced forms associated with 
them. This makes the solution of such S by the arithmetic method just described very 
complex. The solution for some members of species 4(a) was carried out by this 
approach. However, the solutions for species 3(b), 4(b) and 4(c) were obtained in a 
completely different fashion. This used the Jacobian &functions and this method of 
evaluating multiple sums has been discussed by Glasser (1973a) and Zucker (1974). 
The approach is as follows. 

&functions of zero argument may be expressed as infinite series of a parameter q. 
They are as given by Whittaker and Watson (1958) 

-m 

where q = e-'. 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
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If a series for 03e3(qh) can be obtained then S(l ,  0, A )  may be obtained immediately. 
Indeed S( 1, 0,3) was first solved using a q-series for e303(q3) originally given by Cauchy 
(1844). The converse is true. That is, knowing the solution to S( l ,  0, A )  it is simple to 
establish the q-series for e3O3(qh). In certain cases it is then possible to derive q-series 
for 8383(q4A) and 8383(q16A) from the known series for 83t?3(qA) and so solve S(1,0,4A) 
and S(1,0,16A). This 'four-folding' method proceeds as follows. Three well known 
identities for &function are employed. They are: 

( a )  

(c ) e3(-q) = e4(4. 

e3 = e3(q4) + ~ 4 ~ ) ;  
(b 1 2e3(q4) = e3 + e3;  (2.14) 

7q is substituted for q in the known series for e3O3(qh), where ~ ~ = - 1 .  Then using 
( 2 . 1 4 ~ )  we obtain 

e3(7q)e3((~q)A) = (e4(q4) +7e2(~4) ) {e3 [ ( -1 )Aq4A~+7Ae2(q4h) } .  (2.15) 

~ ( q )  = e2(q4)e3(q49 = [e3- e3(q4)~e3(~4A).  

Let A = 2 (mod 4), then the coefficient of 7, CT(q), in (2.15) is 

Hence 

(2.16) 

c,(q) = e2(q4)e4(94A). (2.17) 

79 is again substituted for q in (2.17) and the new coefficient of 7, DT(q), found. Then 

DT(q) = Mq4)&(q4*); M,(D,(q))=S(l, 0,4A)-2-2sS(1, 0,A). (2.18) 

Further for A = 3 (mod 4) 

c T ( q ) + D T ( q )  = e2(~4)(e3(q4A)+e4(q4Aj) = 2e2(94)e3(q16A) 
and 

Ms (CT(q) + DT(q)) = 2(S( 1,0,16A) - 2-'"S( 1, 0,4A)). (2.19) 

It is simple to determine C.  and 0, in the above cases. Hence in the case A = 2 (mod 4) 
the derivation of S(1,0,4A) from S(l,O,A) is equivalent to solving species 3(b) 
knowing the solution to 3(a). Similarly for A = 3  (mod 4) (2.18) and (2.19) provide the 
solutions for species 4(b) and 4(c) from the known solution of 4(a). Table 3 shows how 
products of pairs of L-functions transform after substituting ~q for q in their q-series 
representations. 

Table 3. Transformation of products of L-series; p ,  q are odd. 

L-function 2M,(C,(9)) 
product 
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3. Miscellaneous solvable S 

Several S with disjoint forms remain which do not belong to any of the species 
discussed. They divide into two groups. Group ( a )  has A = 4, 16,36,64,72, 100, 180 
and 288 with principal form (1, 0, A/4) where A/4 is not square free. Group ( b )  has 
A = 27, 75, 99, 147 and 315 with principal form (1 ,1,  $A+ 1)) where A is not square 
free. All have been solved by various methods. S(l ,  0 , l )  is the best known of all these 
results and its solution was given first by Hardy (1919). Glasser (1973b) solved 
S(l,O, 4) and S(l ,  0,16). Both may be obtained from S(l,  0 , l )  by the ‘four-folding’ 
method previously described, as this method works in the particular case A = 1. A 
‘nine-folding’ method similar to ‘four-folding’ can be deduced. This makes use of the 
substitution wq for q in a known series for 0303(9*), where w 3  = 1. If A E 2 (mod 3) 
finding, C,(q), the coefficient of w in the 9-series for 0303(qA), leads to 

Ms[C,(q)]=S(l, 0,9A)-3-2sS(1, 0,A). (3.1) 
S(l,O, 2), S(l,O, 5) and S(1,0,8) have been solved and hence the solutions to 
S(l,O, 181, S( l ,  0,45) and S(l,O, 72) are obtained. S(l ,  0,25) and all the members of 
group ( b )  were solved using the arithmetic method. All these results have been given in 
table 2. 

No systematic approach to the solutions af SI, S2 and S1,2 has been attempted. Relations 
amongst them have been found, and a few algorithms developed. These are described 
below. 

For sums with principal form (1, 0, A )  if we add together (2.10), (2.11), (2.12) and 
(2.13) we obtain the relation 

S(1,O,A)+S1(1,O,A)+S2(l,O,A)+S1,2(1,O,A)=22~2sS(1,O,A). (4.1) 

Hence only three of the four sums are independent. Similarly adding (2.10) to (2.12) 
and (2.11) to (2.13) yields the relations 

S(I,O, h)+S,(l,O, A)=2S(l,O, 4A) (4.2) 

Si(1,0, h)+S1,2(1,0, A)=2Si(l, 0,4A). (4.3) 
Put -9 for q in equations (2.10) to (2.13) and we obtain for 

A even S(1,0, A)+Si(l, 0, A ) ;  S2(1,0, h)+S1.2(1,0, A )  
A odd S(1,O,h)-*S1,2(1,0,A); Si(1,O,A)+Sz(l, (),A).  (4.4) 

L*k +-[I -(2(k)21-”]L*k. (4.5) 

The effect of putting -9 for q into the q-series representation of an L-function is to 
transform Ltk if k is odd according to the rule 

If k is even, or the function is multiplied by any factor involving 2-” it is unchanged. As 
an example consider S(l,O, 5) =L+IL-20+L-4L+5. By putting -q for q into the 
q-series for this sum we obtain by (4.4) S1,2(1, 0,5) .  Thus (4.5) allows us to write down 
its value right away, namely 

S1,2(1,0,5) = -[(l -21-”)L+1L-20+(l+21-s)L-4L+5]. (4.6) 
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Some relations between S(l,O, A )  and S( l ,  1, A’), where A ‘ =  (1 +A)/4, may be 
obtained geometrically. Consider two-dimensional space divided into a rectangular 
lattice of sides 1 and JA (figure 1). Take an lattice point to be the origin, 0. Then any 
other lattice point is a distance (m2+An2)”’from 0, where m and n can take all integer 
values, excluding the case where both are simultaneously zero. Let the lattice now have 
particles of the same sign placed on every lattice point and suppose the particles interact 
with a potential, r-2s,  r being the interparticle separation. Then the interaction of the 
particle at 0 with all other particles is just S(l ,  0, A ) .  Form a new lattice from the 
original by putting lattice points on the diagonal bisectors of the old lattice (figure 2). 

Figure 1. Geometric representation of S(l,O, A ) ,  

Figure 2. Geometric representation of S[(1, 1, (1 +A)/4]. 

1 2 1/2 The new lattice points are a distance [(m - $ ) 2 + A ( n  -5) ] from 0. Bu- every point in 
the new lattice is a distance (m2+mn +A‘n2)”2 from 0. Hence if we put particles as 
before on the new lattice sites as well, the interaction of the origin particle with all the 
others is just S(1, 1, A’). But this is just the original interaction S(1,0, A )  plus the 
interaction of the origin particle with those in the new lattice sites, i.e. 

o o w  
S( l ,  l ,A’)=S(l,O,A)+ 1 [(m-$)2+A(n-$)2]-’. 

-CO -w 
(4.7) 

The right-hand side (RHS) of (4.7) can be expressed as Mellin transforms of &functions 
giving 

RHS(4.7)=Ms(e363(qA)- 1 +6262(qA)). (4.8) 

e3e3(qA) + e2e2(qA) = 8e3(q 1/4)e3(qA/4) + e4(q 1/4)e4(qA/4)). 

Using the identities (2.14) enables us after some manipulation to write 

(4.9) 
Then using the property of Mellin transforms that 

Ms(f(qk)) = k-”M,(f(q)), q =e-‘ 
we have 

S(1, 1, A’) = 22s-’(S(1, 0, A)+S1,2(1, 0, A) ) .  

(4.10) 

(4.11) 
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If instead of puttingparticles of the same sign on the new lattice sites we put particles 
of sign opposite to those on the original lattice sites, then the interaction of the origin 
particle with all others is S2( 1, 1, A’). Then it may be shown in a similar fashion to before 
that 

S2(1, 1,A’)=22“-’(Sl(l,0,A)+S2(1,0,A)). (4.12) 

Adding (4.11) to (4.12) and using (4.1) we have 

S(1, l,A’)+S2(1, 1,Af)=2S(1,0,A). (4.13) 

Consider again the original rectangular lattice. Suppose we place particles of 
alternating sign on the lattice sites. The interaction of the origin particle with all others 
will then be S1,2(1, 0, A) .  Let us now place particles of alternating sign on the diagonal 
bisectors. The array formed will appear as either figure 3(a) or figure 3(b) .  

+ - + - -. + - t 

la I ( b l  

F i e  3. (a )  Geometric representation of Sl,2[(l, 1, (1 +A)/4]; ( b )  Geometricrepresenta- 
tion of S1[l, 1, (l+A)/4]. 

The interaction of the origin particle with all others is either S1,2(1, 1, A’) or Sl( l ,  1, A’). 
But the addition of particles with alternating signs on the diagonal bisectors contributes, 
from symmetry considerations, precisely zero to the original sum, i.e. 

(4.14) 

m o s  

-os -m 
1 1 (-1)m+”[(m-~)2+A(n-$)2]-”=0. 

Hence 
S1,2(1, l ,Af)=Si( l ,  1,A’)=S1,2(1,O,A). 

If (4.13) is now added to twice (4.14) then 

S(l, 1, A’)+S1(1, 1, A’)+S2(1, 1, A’)+S1,2(1, 1, A’) 

= 2(S(1,0, A)+Sl,l(lr 0, A))=22-2sS(1, 1,  A‘) (4.15) 
which is analogous to (4.1). From these relations it is seen that of the four sums 
(l . lk(1.4) only two are independent when a = b = 1, since (4.15) shows only three are 
independent, of which two are equal by (4.14). No doubt similar relations for sums 
related to non-principal forms may be found. 

Numerically the evaluation of S requires the calculation of the L-series. Since all 
these series (except L+l) consist of equal numbers of positive and negative terms 
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periodically recurring, their evaluation is straightforward. For s an odd positive integer 
the a-type functions, and for s an even positive integer the 6-type functions there are 
known formulae (11(4.11), (4.12)) giving the functions in terms of T. Since the pairs of 
L-series occurring in the solution of S are always of opposite type, no formula in terms 
of known simple transcendental numbers can be found for S with integral s. However, 
s = 1 is a special case for both types of L-series are expressible in closed form (11(4.14), 
(4.15)). Hence for s = 1, though S diverges, SI, S2 and may all be expressed in 
closed form. This leads to some unusual formulae, e.g. 

1 (-1)"(m2+58n2)-' ==ln(27+5429). - I T  

(m,n ZO.0) 
(4.16) 

Some interesting summation formulae and also approximations to T involving 
logarithms of surds similar to those obtained by Ramanujan (1914) may also be 
deduced. These will be discussed elsewhere. 

5. Condusion 

The solution to some problems raised in I concerning the evaluation of S have been 
proposed. As yet there appears to be no practical significance (except elegance) in the 
results obtained. However, the fact that quite complex two-dimensional lattice sums 
may be decomposed into simple sums lends encouragement to the pursuit of similar 
solutions of the physically more important, but so far elusive, three-dimensional sums. 
A different way of constructing q-series without using &functions has recently been 
proposed by Glasser (1975), who thus solved a five-divisional sum. His cautious 
optimism concerning the solution of three- and other odd-dimensional results balances 
our pessimism-now slightly lessened-with regard to them. 
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